Novel poly(ADP-ribose) polymerase-1 inhibitor, AG14361, restores sensitivity to temozolomide in mismatch repair-deficient cells.

نویسندگان

  • Nicola J Curtin
  • Lan-Zhen Wang
  • Anthie Yiakouvaki
  • Suzanne Kyle
  • Christine A Arris
  • Stacie Canan-Koch
  • Stephen E Webber
  • Barbara W Durkacz
  • Hilary A Calvert
  • Zdenek Hostomsky
  • David R Newell
چکیده

PURPOSE Mismatch repair (MMR) deficiency confers resistance to temozolomide, a clinically active DNA-methylating agent. The purpose of the current study was to investigate the reversal mechanism of temozolomide resistance by the potent novel poly(ADP-ribose) polymerase (PARP)-1 inhibitor, AG14361, in MMR-proficient and -deficient cells. EXPERIMENTAL DESIGN The effects of AG14361, in comparison with the methylguanine DNA methyltransferase inhibitor, benzylguanine, on temozolomide-induced growth inhibition were investigated in matched pairs of MMR-proficient (HCT-Ch3, A2780, and CP70-ch3) and -deficient (HCT116, CP70, and CP70-ch2) cells. RESULTS AG14361 enhanced temozolomide activity in all MMR-proficient cells (1.5-3.3-fold) but was more effective in MMR-deficient cells (3.7-5.2-fold potentiation), overcoming temozolomide resistance. In contrast, benzylguanine only increased the efficacy of temozolomide in MMR-proficient cells but was ineffective in MMR-deficient cells. The differential effect of AG14361 in MMR-deficient cells was not attributable to differences in PARP-1 activity or differences in its inhibition by AG14361, nor was it attributable to differences in DNA strand breaks induced by temozolomide plus AG14361. MMR-deficient cells are resistant to cisplatin, but AG14361 did not sensitize any cells to cisplatin. PARP-1 inhibitors potentiate topotecan-induced growth inhibition, but AG14361 did not potentiate topotecan in MMR-deficient cells more than in MMR-proficient cells. CONCLUSIONS MMR defects are relatively common in sporadic tumors and cancer syndromes. PARP-1 inhibition represents a novel way of selectively targeting such tumors. The underlying mechanism is probably a shift of the cytotoxic locus of temozolomide to N(7)-methylguanine and N(3)-methyladenine, which are repaired by the base excision repair pathway in which PARP-1 actively participates.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Preclinical selection of a novel poly(ADP-ribose) polymerase inhibitor for clinical trial.

Poly(ADP-ribose) polymerase (PARP)-1 (EC 2.4.2.30) is a nuclear enzyme that promotes the base excision repair of DNA breaks. Inhibition of PARP-1 enhances the efficacy of DNA alkylating agents, topoisomerase I poisons, and ionizing radiation. Our aim was to identify a PARP inhibitor for clinical trial from a panel of 42 potent PARP inhibitors (K(i), 1.4-15.1 nmol/L) based on the quinazolinone, ...

متن کامل

Radiosensitization and DNA repair inhibition by the combined use of novel inhibitors of DNA-dependent protein kinase and poly(ADP-ribose) polymerase-1.

The DNA repair enzymes, DNA-dependent protein kinase (DNA-PK) and poly(ADP-ribose) polymerase-1 (PARP-1), are key determinants of radio- and chemo-resistance. We have developed and evaluated novel specific inhibitors of DNA-PK (NU7026) and PARP-1 (AG14361) for use in anticancer therapy. PARP-1- and DNA-PK-deficient cell lines were 4-fold more sensitive to ionizing radiation (IR) alone, and show...

متن کامل

The novel poly(ADP-Ribose) polymerase inhibitor, AG14361, sensitizes cells to topoisomerase I poisons by increasing the persistence of DNA strand breaks.

Poly(ADP-ribose) polymerase (PARP) inhibitors enhance DNA topoisomerase I (topo I) poison-induced cytotoxicity and antitumor activity in vitro and in vivo, but the mechanism has not been defined. We investigated the role of PARP-1 in the response to topo I poisons using PARP-1-/- and PARP-1+/+ mouse embryonic fibroblasts and the potent PARP-1 inhibitor, AG14361 (Ki < 5 nmol/L). PARP-1-/- mouse ...

متن کامل

Anticancer chemosensitization and radiosensitization by the novel poly(ADP-ribose) polymerase-1 inhibitor AG14361.

BACKGROUND Poly(ADP-ribose) polymerase-1 (PARP-1) facilitates the repair of DNA strand breaks. Inhibiting PARP-1 increases the cytotoxicity of DNA-damaging chemotherapy and radiation therapy in vitro. Because classical PARP-1 inhibitors have limited clinical utility, we investigated whether AG14361, a novel potent PARP-1 inhibitor (inhibition constant <5 nM), enhances the effects of chemotherap...

متن کامل

Poly(ADP-ribose) polymerase-1 inhibition reverses temozolomide resistance in a DNA mismatch repair-deficient malignant glioma xenograft.

Temozolomide is a DNA-methylating agent used in the treatment of malignant gliomas. In this study, we have examined if inhibition of poly(ADP-ribose) polymerase (PARP) could increase the cytotoxicity of temozolomide, particularly in cells deficient in DNA mismatch repair. Athymic mice, transplanted with mismatch repair-proficient [D-245 MG] or deficient [D-245 MG (PR)] xenografts, were treated ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Clinical cancer research : an official journal of the American Association for Cancer Research

دوره 10 3  شماره 

صفحات  -

تاریخ انتشار 2004